HES1 Promotes Colorectal Cancer Cell Resistance To 5-Fu by Inducing Of EMT and ABC Transporter Proteins
نویسندگان
چکیده
Background and Aim: Hairy enhancer of split-1 (HES1) is a downstream transcriptional factor of Notch signaling pathway, which was found to be related to chemoresistance. This study was aimed to investigate the role of HES1 in chemoresistance of colorectal cancer (CRC). Methods: Tissue microarray was used to analyze the clinical significance of HES1 in radical resected (R0) stage II/III CRC patients that received adjuvant chemotherapy. 5-fluorouracil (5-Fu) chemoresistance was examined in CRC cell lines (RKO and HCT8, LOVO) with stable over-expression and inhibition of HES1 gene by cytotoxicity test. Gene expression microarray was used to investigate the enriched pathways and different expressed of genes in cells with over-expressed HES1. Expression changes of the chemoresistance related genes were confirmed by qPCR and western blot analysis. Results: Stage II CRC patients with higher HES1 expression showed higher recurrence rate after chemotherapy. Colon cancer cell lines which over-expressed HES1 were more resistant to 5-Fu treatment in vitro. Gene expression microarray revealed that HES1 was related to the signaling pathways of epithelial-mesenchymal transition (EMT) and drug metabolism. Immunofluorescence assay showed HES1 over-expression lead to depressed E-cadherin and elevated N-cadherin. QPCR and western blot analysis confirmed that ABCC1, ABCC2 and P-gp1 were induced after HES1 over-expression. Conclusions: HES1 promotes chemoresistance to 5-Fu by prompting EMT and inducing of several ABC transporter genes. HES1 might be a novel therapeutic target in CRC treatment.
منابع مشابه
5-Fluorouracil Induce the Expression of TLR4 on HCT116 Colorectal Cancer Cell Line Expressing Different Variants of TLR4
Two common single nucleotide polymorphisms (SNPs) of the human TLR4 gene, namely Asp299Gly (D299G) and Thr399Ile (T399I), have been shown to impair the ability of certain individuals to respond properly to TLR4 ligands. 5-Fluorouracil (5-FU) is widely used for the treatment of patients with advanced colon cancers. The present study examined the impact of two common polymorphisms of the TLR4 gen...
متن کاملMesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line
Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...
متن کامل5-Fluorouracil Induce the Expression of TLR4 on HCT116 Colorectal Cancer Cell Line Expressing Different Variants of TLR4
Two common single nucleotide polymorphisms (SNPs) of the human TLR4 gene, namely Asp299Gly (D299G) and Thr399Ile (T399I), have been shown to impair the ability of certain individuals to respond properly to TLR4 ligands. 5-Fluorouracil (5-FU) is widely used for the treatment of patients with advanced colon cancers. The present study examined the impact of two common polymorphisms of the TLR4 gen...
متن کاملCarcinoembryonic Antigen Expression and Resistance to Radiation-and 5-Fluorouracil-Induced Apoptosis and Autophagy
Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5- azacytidine (5-AZA) to induce CEA expression in HT29...
متن کاملUpregulation of CD147 promotes cell invasion, epithelial-to-mesenchymal transition and activates MAPK/ERK signaling pathway in colorectal cancer.
Colorectal cancer (CRC) is one of the most common cancers in the world. CD147, a transmembrane protein, has been reported to be correlated with various cancers. In this study, we aimed to investigate the mechanism of CD147 in regulating drug resistance, cell invasion and epithelial-to-mesenchymal transition (EMT) in CRC cells. qRT-PCR and western blotting were used to evaluated the expression o...
متن کامل